Merge branch 'master' into xoroshiro256

This commit is contained in:
PartialVolume
2024-03-21 21:28:06 +00:00
committed by GitHub
7 changed files with 260 additions and 15 deletions

View File

@@ -6,5 +6,5 @@ AM_LDFLAGS =
# this lists the binaries to produce, the (non-PHONY, binary) targets in
# the previous manual Makefile
bin_PROGRAMS = nwipe
nwipe_SOURCES = context.h logging.h options.h prng.h version.h temperature.h nwipe.c gui.c method.h pass.c device.c gui.h isaac_rand/isaac_standard.h isaac_rand/isaac_rand.h isaac_rand/isaac_rand.c isaac_rand/isaac64.h isaac_rand/isaac64.c mt19937ar-cok/mt19937ar-cok.c nwipe.h mt19937ar-cok/mt19937ar-cok.h xor/xoroshiro256_prng.h xor/xoroshiro256_prng.c pass.h device.h logging.c method.c options.c prng.c version.c temperature.c PDFGen/pdfgen.h PDFGen/pdfgen.c create_pdf.c create_pdf.h embedded_images/shred_db.jpg.c embedded_images/shred_db.jpg.h embedded_images/tick_erased.jpg.c embedded_images/tick_erased.jpg.h embedded_images/redcross.c embedded_images/redcross.h hpa_dco.h hpa_dco.c miscellaneous.h miscellaneous.c embedded_images/nwipe_exclamation.jpg.h embedded_images/nwipe_exclamation.jpg.c conf.h conf.c customers.h customers.c hddtemp_scsi/hddtemp.h hddtemp_scsi/scsi.h hddtemp_scsi/scsicmds.h hddtemp_scsi/get_scsi_temp.c hddtemp_scsi/scsi.c hddtemp_scsi/scsicmds.c
nwipe_SOURCES = context.h logging.h options.h prng.h version.h temperature.h nwipe.c gui.c method.h pass.c device.c gui.h isaac_rand/isaac_standard.h isaac_rand/isaac_rand.h isaac_rand/isaac_rand.c isaac_rand/isaac64.h isaac_rand/isaac64.c mt19937ar-cok/mt19937ar-cok.c nwipe.h mt19937ar-cok/mt19937ar-cok.h alfg/add_lagg_fibonacci_prng.h alfg/add_lagg_fibonacci_prng.c xor/xoroshiro256_prng.h xor/xoroshiro256_prng.c pass.h device.h logging.c method.c options.c prng.c version.c temperature.c PDFGen/pdfgen.h PDFGen/pdfgen.c create_pdf.c create_pdf.h embedded_images/shred_db.jpg.c embedded_images/shred_db.jpg.h embedded_images/tick_erased.jpg.c embedded_images/tick_erased.jpg.h embedded_images/redcross.c embedded_images/redcross.h hpa_dco.h hpa_dco.c miscellaneous.h miscellaneous.c embedded_images/nwipe_exclamation.jpg.h embedded_images/nwipe_exclamation.jpg.c conf.h conf.c customers.h customers.c hddtemp_scsi/hddtemp.h hddtemp_scsi/scsi.h hddtemp_scsi/scsicmds.h hddtemp_scsi/get_scsi_temp.c hddtemp_scsi/scsi.c hddtemp_scsi/scsicmds.c
nwipe_LDADD = $(PARTED_LIBS) $(LIBCONFIG)

View File

@@ -0,0 +1,79 @@
/*
* Additive Lagged Fibonacci Generator (ALFG) Implementation
* Author: Fabian Druschke
* Date: 2024-03-13
*
* This is an implementation of the Additive Lagged Fibonacci Generator (ALFG),
* a pseudorandom number generator known for its simplicity and good statistical properties
* for a wide range of applications. ALFGs are particularly noted for their long periods
* and efficiency in generating sequences of random numbers. However, like many other PRNGs,
* they are not suitable for cryptographic purposes due to their predictability.
*
* As the author of this implementation, I, Fabian Druschke, hereby release this work into
* the public domain. I dedicate any and all copyright interest in this work to the public
* domain, making it free to use for anyone for any purpose without any conditions, unless
* such conditions are required by law.
*
* This software is provided "as is", without warranty of any kind, express or implied,
* including but not limited to the warranties of merchantability, fitness for a particular
* purpose, and noninfringement. In no event shall the authors be liable for any claim,
* damages, or other liability, whether in an action of contract, tort, or otherwise, arising
* from, out of, or in connection with the software or the use or other dealings in the software.
*
* Note: This implementation is designed for non-cryptographic applications and should not be
* used where cryptographic security is required.
*/
#include "add_lagg_fibonacci_prng.h"
#include <stdint.h>
#include <string.h>
#define STATE_SIZE 64 // Size of the state array, sufficient for a high period
#define LAG_BIG 55 // Large lag, e.g., 55
#define LAG_SMALL 24 // Small lag, e.g., 24
#define MODULUS ( 1ULL << 48 ) // Modulus for the operations, here 2^48 for simple handling
void add_lagg_fibonacci_init( add_lagg_fibonacci_state_t* state, uint64_t init_key[], unsigned long key_length )
{
// Simple initialization: Fill the state with the key values and then with a linear combination of them
for( unsigned long i = 0; i < STATE_SIZE; i++ )
{
if( i < key_length )
{
state->s[i] = init_key[i];
}
else
{
// Simple method to generate further state values. Should be improved for serious applications.
state->s[i] = ( 6364136223846793005ULL * state->s[i - 1] + 1 ) % MODULUS;
}
}
state->index = 0; // Initialize the index for the first generation
}
void add_lagg_fibonacci_genrand_uint256_to_buf( add_lagg_fibonacci_state_t* state, unsigned char* bufpos )
{
uint64_t* buf_as_uint64 = (uint64_t*) bufpos; // Interprets bufpos as a uint64_t array for direct assignment
int64_t result; // Use signed integer to handle potential negative results from subtraction
for (int i = 0; i < 4; i++) {
// Subtract the two previous numbers in the sequence
result = (int64_t)state->s[(state->index + LAG_BIG) % STATE_SIZE] - (int64_t)state->s[(state->index + LAG_SMALL) % STATE_SIZE];
// Handle borrow if result is negative
if (result < 0) {
result += MODULUS;
// Optionally set a borrow flag or adjust the next operation based on borrow logic
}
// Store the result (after adjustment) back into the state, ensuring it's positive and within range
state->s[state->index] = (uint64_t)result;
// Write the result into buf_as_uint64
buf_as_uint64[i] = state->s[state->index];
// Update the index for the next round
state->index = (state->index + 1) % STATE_SIZE;
}
}

View File

@@ -0,0 +1,43 @@
/*
* Additive Lagged Fibonacci Generator (ALFG) Implementation definitions
* Author: Fabian Druschke
* Date: 2024-03-13
*
* This is an implementation of the Additive Lagged Fibonacci Generator (ALFG),
* a pseudorandom number generator known for its simplicity and good statistical properties
* for a wide range of applications. ALFGs are particularly noted for their long periods
* and efficiency in generating sequences of random numbers. However, like many other PRNGs,
* they are not suitable for cryptographic purposes due to their predictability.
*
* As the author of this implementation, I, Fabian Druschke, hereby release this work into
* the public domain. I dedicate any and all copyright interest in this work to the public
* domain, making it free to use for anyone for any purpose without any conditions, unless
* such conditions are required by law.
*
* This software is provided "as is", without warranty of any kind, express or implied,
* including but not limited to the warranties of merchantability, fitness for a particular
* purpose, and noninfringement. In no event shall the authors be liable for any claim,
* damages, or other liability, whether in an action of contract, tort, or otherwise, arising
* from, out of, or in connection with the software or the use or other dealings in the software.
*
* Note: This implementation is designed for non-cryptographic applications and should not be
* used where cryptographic security is required.
*/
#ifndef ADD_LAGG_FIBONACCI_PRNG_H
#define ADD_LAGG_FIBONACCI_PRNG_H
#include <stdint.h>
// State definition for the Additive Lagged Fibonacci Generator
typedef struct
{
uint64_t s[64]; // State array
unsigned int index; // Current index in the state array
} add_lagg_fibonacci_state_t;
// Function prototypes
void add_lagg_fibonacci_init( add_lagg_fibonacci_state_t* state, uint64_t init_key[], unsigned long key_length );
void add_lagg_fibonacci_genrand_uint256_to_buf( add_lagg_fibonacci_state_t* state, unsigned char* bufpos );
#endif // ADD_LAGG_FIBONACCI_PRNG_H

View File

@@ -1601,6 +1601,7 @@ void nwipe_gui_prng( void )
extern nwipe_prng_t nwipe_isaac64;
extern nwipe_prng_t nwipe_aes_ctr_prng;
extern nwipe_prng_t nwipe_xoroshiro256_prng;
extern nwipe_prng_t nwipe_add_lagg_fibonacci_prng;
extern int terminate_signal;
@@ -1639,10 +1640,14 @@ void nwipe_gui_prng( void )
{
focus = 2;
}
if( nwipe_options.prng == &nwipe_xoroshiro256_prng )
if( nwipe_options.prng == &nwipe_add_lagg_fibonacci_prng )
{
focus = 3;
}
if( nwipe_options.prng == &nwipe_xoroshiro256_prng )
{
focus = 4;
}
do
{
/* Clear the main window. */
@@ -1657,6 +1662,7 @@ void nwipe_gui_prng( void )
mvwprintw( main_window, yy++, tab1, " %s", nwipe_twister.label );
mvwprintw( main_window, yy++, tab1, " %s", nwipe_isaac.label );
mvwprintw( main_window, yy++, tab1, " %s", nwipe_isaac64.label );
mvwprintw( main_window, yy++, tab1, " %s", nwipe_add_lagg_fibonacci_prng.label );
mvwprintw( main_window, yy++, tab1, " %s", nwipe_xoroshiro256_prng.label );
yy++;
@@ -1740,8 +1746,53 @@ void nwipe_gui_prng( void )
tab1,
"Performs best on a 64-bit CPU. Use ISAAC if this system has a 32-bit CPU. " );
break;
case 3:
mvwprintw( main_window,
yy++,
tab1,
"ALFG (Additive Lagged Fibonacci Generator), is a class of PRNGs utilizing" );
mvwprintw( main_window,
yy++,
tab1,
"the Fibonacci sequence with additive operations between lagged values. While" );
mvwprintw( main_window,
yy++,
tab1,
"they offer a good balance between speed and randomness, it's important to note" );
mvwprintw( main_window,
yy++,
tab1,
"that they provide lower levels of security, making them less suitable for" );
mvwprintw( main_window,
yy++,
tab1,
"cryptographic applications. Their periodicity depends on the choice of lags" );
mvwprintw( main_window,
yy++,
tab1,
"and arithmetic operations, potentially achieving large values, often 2^N or" );
mvwprintw( main_window,
yy++,
tab1,
"higher, where N is the bit length of the states. " );
mvwprintw( main_window,
yy++,
tab1,
" " );
mvwprintw( main_window,
yy++,
tab1,
"Efficient on CPUs of any bit width, particularly suited for non-cryptographic" );
mvwprintw( main_window,
yy++,
tab1,
"applications requiring long sequences with a good speed-randomness trade-off. " );
break;
case 4:
mvwprintw( main_window,
yy++,
tab1,
@@ -1850,6 +1901,10 @@ void nwipe_gui_prng( void )
nwipe_options.prng = &nwipe_isaac64;
}
if( focus == 3 )
{
nwipe_options.prng = &nwipe_add_lagg_fibonacci_prng;
}
if( focus == 4 )
{
nwipe_options.prng = &nwipe_xoroshiro256_prng;
}

View File

@@ -42,6 +42,7 @@ int nwipe_options_parse( int argc, char** argv )
extern nwipe_prng_t nwipe_twister;
extern nwipe_prng_t nwipe_isaac;
extern nwipe_prng_t nwipe_isaac64;
extern nwipe_prng_t nwipe_add_lagg_fibonacci_prng;
extern nwipe_prng_t nwipe_xoroshiro256_prng;
/* The getopt() result holder. */
@@ -491,6 +492,11 @@ int nwipe_options_parse( int argc, char** argv )
nwipe_options.prng = &nwipe_isaac64;
break;
}
if( strcmp( optarg, "add_lagg_fibonacci_prng" ) == 0 )
{
nwipe_options.prng = &nwipe_add_lagg_fibonacci_prng;
break;
}
if( strcmp( optarg, "xoroshiro256_prng" ) == 0 )
{
nwipe_options.prng = &nwipe_xoroshiro256_prng;
@@ -545,6 +551,7 @@ void nwipe_options_log( void )
extern nwipe_prng_t nwipe_twister;
extern nwipe_prng_t nwipe_isaac;
extern nwipe_prng_t nwipe_isaac64;
extern nwipe_prng_t nwipe_add_lagg_fibonacci_prng;
extern nwipe_prng_t nwipe_xoroshiro256_prng;
/**
@@ -597,26 +604,35 @@ void nwipe_options_log( void )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Mersenne Twister" );
}
if( nwipe_options.prng == &nwipe_xoroshiro256_prng )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = XORoshiro-256 (EXPERIMENTAL!)" );
}
else
{
if( nwipe_options.prng == &nwipe_isaac )
if( nwipe_options.prng == &nwipe_add_lagg_fibonacci_prng )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Isaac" );
nwipe_log( NWIPE_LOG_NOTICE, " prng = Lagged Fibonacci generator (EXPERIMENTAL!)" );
}
else
{
if( nwipe_options.prng == &nwipe_isaac64 )
if( nwipe_options.prng == &nwipe_xoroshiro256_prng )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Isaac64" );
nwipe_log( NWIPE_LOG_NOTICE, " prng = XORoshiro-256 (EXPERIMENTAL!)" );
}
else
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Undefined" );
if( nwipe_options.prng == &nwipe_isaac )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Isaac" );
}
else
{
if( nwipe_options.prng == &nwipe_isaac64 )
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Isaac64" );
}
else
{
nwipe_log( NWIPE_LOG_NOTICE, " prng = Undefined" );
}
}
}
}
}
@@ -693,7 +709,7 @@ void display_help()
puts( " -l, --logfile=FILE Filename to log to. Default is STDOUT\n" );
puts( " -P, --PDFreportpath=PATH Path to write PDF reports to. Default is \".\"" );
puts( " If set to \"noPDF\" no PDF reports are written.\n" );
puts( " -p, --prng=METHOD PRNG option (mersenne|twister|isaac|isaac64)\n" );
puts( " -p, --prng=METHOD PRNG option (mersenne|twister|isaac|isaac64|add_lagg_fibonacci_prng)\n" );
puts( " -q, --quiet Anonymize logs and the GUI by removing unique data, i.e." );
puts( " serial numbers, LU WWN Device ID, and SMBIOS/DMI data" );
puts( " XXXXXX = S/N exists, ????? = S/N not obtainable\n" );

View File

@@ -25,6 +25,7 @@
#include "mt19937ar-cok/mt19937ar-cok.h"
#include "isaac_rand/isaac_rand.h"
#include "isaac_rand/isaac64.h"
#include "alfg/add_lagg_fibonacci_prng.h" //Lagged Fibonacci generator prototype
#include "xor/xoroshiro256_prng.h" //XORoshiro-256 prototype
nwipe_prng_t nwipe_twister = { "Mersenne Twister (mt19937ar-cok)", nwipe_twister_init, nwipe_twister_read };
@@ -32,6 +33,10 @@ nwipe_prng_t nwipe_twister = { "Mersenne Twister (mt19937ar-cok)", nwipe_twister
nwipe_prng_t nwipe_isaac = { "ISAAC (rand.c 20010626)", nwipe_isaac_init, nwipe_isaac_read };
nwipe_prng_t nwipe_isaac64 = { "ISAAC-64 (isaac64.c)", nwipe_isaac64_init, nwipe_isaac64_read };
/* ALFG PRNG Structure */
nwipe_prng_t nwipe_add_lagg_fibonacci_prng = { "Lagged Fibonacci generator",
nwipe_add_lagg_fibonacci_prng_init,
nwipe_add_lagg_fibonacci_prng_read };
/* XOROSHIRO-256 PRNG Structure */
nwipe_prng_t nwipe_xoroshiro256_prng = { "XORoshiro-256", nwipe_xoroshiro256_prng_init, nwipe_xoroshiro256_prng_read };
@@ -255,8 +260,21 @@ int nwipe_isaac64_read( NWIPE_PRNG_READ_SIGNATURE )
return 0;
}
/* EXPERIMENTAL implementation of XORoroshiro256 algorithm to provide high-quality, but a lot of random numbers */
/* EXPERIMENTAL implementation of Lagged Fibonacci generator a lot of random numbers */
int nwipe_add_lagg_fibonacci_prng_init( NWIPE_PRNG_INIT_SIGNATURE )
{
if( *state == NULL )
{
nwipe_log( NWIPE_LOG_NOTICE, "Initialising Lagged Fibonacci generator PRNG" );
*state = malloc( sizeof( add_lagg_fibonacci_state_t ) );
}
add_lagg_fibonacci_init(
(add_lagg_fibonacci_state_t*) *state, (unsigned long*) ( seed->s ), seed->length / sizeof( unsigned long ) );
return 0;
}
/* EXPERIMENTAL implementation of XORoroshiro256 algorithm to provide high-quality, but a lot of random numbers */
int nwipe_xoroshiro256_prng_init( NWIPE_PRNG_INIT_SIGNATURE )
{
nwipe_log( NWIPE_LOG_NOTICE, "Initialising XORoroshiro-256 PRNG" );
@@ -272,6 +290,32 @@ int nwipe_xoroshiro256_prng_init( NWIPE_PRNG_INIT_SIGNATURE )
return 0;
}
int nwipe_add_lagg_fibonacci_prng_read( NWIPE_PRNG_READ_SIGNATURE )
{
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_ADD_LAGG_FIBONACCI_PRNG;
/* Loop to fill the buffer with blocks directly from the Fibonacci algorithm */
for( size_t ii = 0; ii < words; ++ii )
{
add_lagg_fibonacci_genrand_uint256_to_buf( (add_lagg_fibonacci_state_t*) *state, bufpos );
bufpos += SIZE_OF_ADD_LAGG_FIBONACCI_PRNG; // Move to the next block
}
/* Handle remaining bytes if count is not a multiple of SIZE_OF_ADD_LAGG_FIBONACCI_PRNG */
const size_t remain = count % SIZE_OF_ADD_LAGG_FIBONACCI_PRNG;
if( remain > 0 )
{
unsigned char temp_output[16]; // Temporary buffer for the last block
add_lagg_fibonacci_genrand_uint256_to_buf( (add_lagg_fibonacci_state_t*) *state, temp_output );
// Copy the remaining bytes
memcpy( bufpos, temp_output, remain );
}
return 0; // Success
}
int nwipe_xoroshiro256_prng_read( NWIPE_PRNG_READ_SIGNATURE )
{
u8* restrict bufpos = buffer;
@@ -290,6 +334,7 @@ int nwipe_xoroshiro256_prng_read( NWIPE_PRNG_READ_SIGNATURE )
{
unsigned char temp_output[16]; // Temporary buffer for the last block
xoroshiro256_genrand_uint256_to_buf( (xoroshiro256_state_t*) *state, temp_output );
// Copy the remaining bytes
memcpy( bufpos, temp_output, remain );
}

View File

@@ -55,6 +55,10 @@ int nwipe_isaac_read( NWIPE_PRNG_READ_SIGNATURE );
int nwipe_isaac64_init( NWIPE_PRNG_INIT_SIGNATURE );
int nwipe_isaac64_read( NWIPE_PRNG_READ_SIGNATURE );
/* ALFG prototypes. */
int nwipe_add_lagg_fibonacci_prng_init( NWIPE_PRNG_INIT_SIGNATURE );
int nwipe_add_lagg_fibonacci_prng_read( NWIPE_PRNG_READ_SIGNATURE );
/* XOROSHIRO-256 prototypes. */
int nwipe_xoroshiro256_prng_init( NWIPE_PRNG_INIT_SIGNATURE );
int nwipe_xoroshiro256_prng_read( NWIPE_PRNG_READ_SIGNATURE );
@@ -66,6 +70,9 @@ int nwipe_xoroshiro256_prng_read( NWIPE_PRNG_READ_SIGNATURE );
#define SIZE_OF_ISAAC 4
#define SIZE_OF_ISAAC64 8
/* Size of the Lagged Fibonacci generator is not derived from the architecture, but it is strictly 32 bytes */
#define SIZE_OF_ADD_LAGG_FIBONACCI_PRNG 32
/* Size of the XOROSHIRO-256 is not derived from the architecture, but it is strictly 32 bytes */
#define SIZE_OF_XOROSHIRO256_PRNG 32