Files
nwipe/src/context.h
PartialVolume dc6d76176a PDFGen13 - further work on PDF certificate
1. Reduced font size for data info.
2. Used a define for text point size to make it easier
to change size.
3. Started work on function to parse sense data for older
versions of hdparm (9.60) that fail to parse the real max
sectors correctly. (fixed in 9.65).
4. Miscellaneous changes.

More changes to follow ..
2023-03-05 00:42:37 +00:00

208 lines
10 KiB
C

/*
* context.h: The internal state representation of nwipe.
*
* Copyright Darik Horn <dajhorn-dban@vanadac.com>.
*
* Modifications to original dwipe Copyright Andy Beverley <andy@andybev.com>
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#ifndef CONTEXT_H_
#define CONTEXT_H_
#include "prng.h"
typedef enum nwipe_device_t_ {
NWIPE_DEVICE_UNKNOWN = 0, // Unknown device.
NWIPE_DEVICE_IDE,
NWIPE_DEVICE_SCSI,
NWIPE_DEVICE_COMPAQ, // Unimplemented.
NWIPE_DEVICE_USB,
NWIPE_DEVICE_IEEE1394, // Unimplemented.
NWIPE_DEVICE_ATA,
NWIPE_DEVICE_NVME,
NWIPE_DEVICE_VIRT,
NWIPE_DEVICE_SAS
} nwipe_device_t;
typedef enum nwipe_pass_t_ {
NWIPE_PASS_NONE = 0, // Not running.
NWIPE_PASS_WRITE, // Writing patterns to the device.
NWIPE_PASS_VERIFY, // Verifying a pass.
NWIPE_PASS_FINAL_BLANK, // Filling the device with zeros.
NWIPE_PASS_FINAL_OPS2 // Special case for nwipe_ops2.
} nwipe_pass_t;
typedef enum nwipe_select_t_ {
NWIPE_SELECT_NONE = 0, // Unused.
NWIPE_SELECT_TRUE, // Wipe this device.
NWIPE_SELECT_TRUE_PARENT, // A parent of this device has been selected, so the wipe is implied.
NWIPE_SELECT_FALSE, // Do not wipe this device.
NWIPE_SELECT_FALSE_CHILD, // A child of this device has been selected, so we can't wipe this device.
NWIPE_SELECT_DISABLED // Do not wipe this device and do not allow it to be selected.
} nwipe_select_t;
#define NWIPE_KNOB_SPEEDRING_SIZE 30
#define NWIPE_KNOB_SPEEDRING_GRANULARITY 10
typedef struct nwipe_speedring_t_
{
u64 bytes[NWIPE_KNOB_SPEEDRING_SIZE];
u64 bytestotal;
u64 byteslast;
time_t times[NWIPE_KNOB_SPEEDRING_SIZE];
time_t timestotal;
time_t timeslast;
u32 position;
} nwipe_speedring_t;
#define NWIPE_DEVICE_LABEL_LENGTH 200
#define NWIPE_DEVICE_SIZE_TXT_LENGTH 7
// Arbitrary length, so far most paths don't exceed about 25 characters
#define MAX_HWMON_PATH_LENGTH 100
typedef struct nwipe_context_t_
{
/*
* Device fields
*/
int device_block_size; // The soft block size reported by the device.
int device_sector_size; // The hard sector size reported by the device.
int device_bus; // The device bus number.
int device_fd; // The file descriptor of the device file being wiped.
int device_host; // The host number.
struct hd_driveid device_id; // The WIN_IDENTIFY data for IDE drives.
int device_lun; // The device logical unit number.
int device_major; // The major device number.
int device_minor; // The minor device number.
int device_part; // The device partition or slice number.
char* device_name; // The device file name.
char device_name_without_path[100];
char gui_device_name[100];
unsigned long long device_size; // The device size in bytes.
unsigned long long bytes_erased; // Irrespective of pass, this how much of the drive has been erased, CANNOT be
// greater than device_size.
char* device_size_text; // The device size in a more (human)readable format.
char device_size_txt[NWIPE_DEVICE_SIZE_TXT_LENGTH]; // The device size in a more (human)readable format.
char* device_model; // The model of the device.
char device_label[NWIPE_DEVICE_LABEL_LENGTH]; // The label (name, model, size and serial) of the device.
struct stat device_stat; // The device file state from fstat().
nwipe_device_t device_type; // Indicates an IDE, SCSI, or Compaq SMART device in enumerated form (int)
char device_type_str[14]; // Indicates an IDE, SCSI, USB etc as per nwipe_device_t but in ascii
char device_serial_no[21]; // Serial number(processed, 20 characters plus null termination) of the device.
int device_target; // The device target.
u64 eta; // The estimated number of seconds until method completion.
int entropy_fd; // The entropy source. Usually /dev/urandom.
int pass_count; // The number of passes performed by the working wipe method.
u64 pass_done; // The number of bytes that have already been i/o'd in this pass.
u64 pass_errors; // The number of errors across all passes.
u64 pass_size; // The total number of i/o bytes across all passes.
nwipe_pass_t pass_type; // The type of the current working pass.
int pass_working; // The current working pass.
nwipe_prng_t* prng; // The PRNG implementation.
nwipe_entropy_t prng_seed; // The random data that is used to seed the PRNG.
void* prng_state; // The private internal state of the PRNG.
int result; // The process return value.
int round_count; // The number of rounds requested by the user for the working wipe method.
u64 round_done; // The number of bytes that have already been i/o'd.
u64 round_errors; // The number of errors across all rounds.
u64 round_size; // The total number of i/o bytes across all rounds.
double round_percent; // The percentage complete across all rounds.
int round_working; // The current working round.
nwipe_select_t select; // Indicates whether this device should be wiped.
int signal; // Set when the child is killed by a signal.
nwipe_speedring_t speedring; // Ring buffer for computing the rolling throughput average.
short sync_status; // A flag to indicate when the method is syncing.
pthread_t thread; // The ID of the thread.
u64 throughput; // Average throughput in bytes per second.
char throughput_txt[13]; // Human readable throughput.
u64 verify_errors; // The number of verification errors across all passes.
char temp1_path[MAX_HWMON_PATH_LENGTH]; // path to temperature variables /sys/class/hwmon/hwmonX/ etc.
int temp1_crit; // Critical high drive temperature, 1000000=unitialised, millidegree celsius.
int temp1_highest; // Historical highest temperature reached, 1000000=unitialised, millidegree celsius.
int temp1_input; // drive temperature, -1=unitialised. 1000000=unitialised, millidegree celsius.
int temp1_lcrit; // Critical low drive temperature, 1000000=unitialised, millidegree celsius.
int temp1_lowest; // Historically lowest temperature, 1000000=unitialised, millidegree celsius.
int temp1_max; // Maximum allowed temperature, 1000000=unitialised, millidegree celsius.
int temp1_min; // Minimum allowed temperature, 1000000=unitialised, millidegree celsius.
int temp1_monitored_wipe_max;
int temp1_monitored_wipe_min;
int temp1_monitored_wipe_avg;
int temp1_flash_rate; // number relates to one tenth of a second, so 2 means a flash on and off = 0.4s
int temp1_flash_rate_counter; // used by the gui for timing the flash rate
int temp1_flash_rate_status; // 0=blank 1=visible
time_t temp1_time; // The time when temperature was last checked, seconds since epoch
int wipe_status; // Wipe finished = 0, wipe in progress = 1, wipe yet to start = -1.
char wipe_status_txt[10]; // ERASED, FAILED, ABORTED, INSANITY
int spinner_idx; // Index into the spinner character array
char spinner_character[1]; // The current spinner character
double duration; // Duration of the wipe in seconds
char duration_str[20]; // The duration string in hh:mm:ss
time_t start_time; // Start time of wipe
time_t end_time; // End time of wipe
u64 fsyncdata_errors; // The number of fsyncdata errors across all passes.
char PDF_filename[256]; // The filename of the PDF certificate/report.
int HPA_status; // 0 = No HPA found/disabled, 1 = HPA detected, 2 = Unknown, unable to checked,
// 3 = Not applicable to this device
u64 HPA_reported_set; // the 'HPA set' value reported hdparm -N, i.e the first value of n/n
u64 HPA_reported_real; // the 'HPA real' value reported hdparm -N, i.e the second value of n/n
int DCO_status; // 0 = No DCO found, 1 = DCO detected, 2 = Unknown, unable to checked
u64 DCO_reported_real_max_sectors; // real max sectors as reported by hdparm --dco-identify
u64 DCO_reported_real_max_size; // real max sectors in bytes
char DCO_reported_real_max_size_text[NWIPE_DEVICE_SIZE_TXT_LENGTH]; // real max size in human readable form i.e 1TB
// etc
u64 HPA_size; // The size of the host protected area in sectors
char HPA_size_text[NWIPE_DEVICE_SIZE_TXT_LENGTH]; // Human readable size bytes, KB, MB, GB ..
int HPA_display_toggle_state; // 0 or 1 Used to toggle between "[1TB] [ 33C]" and [HDA STATUS]
time_t HPA_toggle_time; // records a time, then if for instance 3 seconds has elapsed the display changes
/*
* Identity contains the raw serial number of the drive
* (where applicable), however, for use within nwipe use the
* processed serial_no[21] string above. To access serial no. use
* c[i]->serial_no) and not c[i]->identity.serial_no);
*/
struct hd_driveid identity;
} nwipe_context_t;
/*
* We use 2 data structs to pass data between threads.
* The first contains any required values.
* Values cannot form part of the second array below, hence the need for this.
*/
typedef struct
{
int nwipe_enumerated; // The number of devices available.
int nwipe_selected; // The number of devices being wiped.
time_t maxeta; // The estimated runtime of the slowest device.
u64 throughput; // Total throughput.
u64 errors; // The combined number of errors of all processes.
pthread_t* gui_thread; // The ID of GUI thread.
} nwipe_misc_thread_data_t;
/*
* The second points to the first structure, as well as the structure of all the devices
*/
typedef struct
{
nwipe_context_t** c; // Pointer to the nwipe context structure.
nwipe_misc_thread_data_t* nwipe_misc_thread_data; // Pointer to the misc structure above.
} nwipe_thread_data_ptr_t;
#endif /* CONTEXT_H_ */